11 research outputs found

    Limited carbon and biodiversity co-benefits for tropical forest mammals and birds

    Get PDF
    The conservation of tropical forest carbon stocks offers the opportunity to curb climate change by reducing greenhouse gas emissions from deforestation and simultaneously conserve biodiversity. However, there has been considerable debate about the extent to which carbon stock conservation will provide benefits to biodiversity in part because whether forests that contain high carbon density in their aboveground biomass also contain high animal diversity is unknown. Here, we empirically examined medium to large bodied ground-dwelling mammal and bird (hereafter "wildlife") diversity and carbon stock levels within the tropics using camera trap and vegetation data from a pantropical network of sites. Specifically, we tested whether tropical forests that stored more carbon contained higher wildlife species richness, taxonomic diversity, and trait diversity. We found that carbon stocks were not a significant predictor for any of these three measures of diversity, which suggests that benefits for wildlife diversity will not be maximized unless wildlife diversity is explicitly taken into account; prioritizing carbon stocks alone will not necessarily meet biodiversity conservation goals. We recommend conservation planning that considers both objectives because there is the potential for more wildlife diversity and carbon stock conservation to be achieved for the same total budget if both objectives are pursued in tandem rather than independently. Tropical forests with low elevation variability and low tree density supported significantly higher wildlife diversity. These tropical forest characteristics may provide more affordable proxies of wildlife diversity for future multi-objective conservation planning when fine scale data on wildlife are lacking

    An estimate of the number of tropical tree species

    Get PDF
    The high species richness of tropical forests has long been recognized, yet there remains substantial uncertainty regarding the actual number of tropical tree species. Using a pantropical tree inventory database from closed canopy forests, consisting of 657,630 trees belonging to 11,371 species, we use a fitted value of Fisher’s alpha and an approximate pantropical stem total to estimate the minimum number of tropical forest tree species to fall between ∼40,000 and ∼53,000, i.e. at the high end of previous estimates. Contrary to common assumption, the Indo-Pacific region was found to be as species-rich as the Neotropics, with both regions having a minimum of ∼19,000–25,000 tree species. Continental Africa is relatively depauperate with a minimum of ∼4,500–6,000 tree species. Very few species are shared among the African, American, and the Indo-Pacific regions. We provide a methodological framework for estimating species richness in trees that may help refine species richness estimates of tree-dependent taxa

    The global abundance of tree palms

    Get PDF
    Aim Palms are an iconic, diverse and often abundant component of tropical ecosystems that provide many ecosystem services. Being monocots, tree palms are evolutionarily, morphologically and physiologically distinct from other trees, and these differences have important consequences for ecosystem services (e.g., carbon sequestration and storage) and in terms of responses to climate change. We quantified global patterns of tree palm relative abundance to help improve understanding of tropical forests and reduce uncertainty about these ecosystems under climate change. Location Tropical and subtropical moist forests. Time period Current. Major taxa studied Palms (Arecaceae). Methods We assembled a pantropical dataset of 2,548 forest plots (covering 1,191 ha) and quantified tree palm (i.e., ≥10 cm diameter at breast height) abundance relative to co‐occurring non‐palm trees. We compared the relative abundance of tree palms across biogeographical realms and tested for associations with palaeoclimate stability, current climate, edaphic conditions and metrics of forest structure. Results On average, the relative abundance of tree palms was more than five times larger between Neotropical locations and other biogeographical realms. Tree palms were absent in most locations outside the Neotropics but present in >80% of Neotropical locations. The relative abundance of tree palms was more strongly associated with local conditions (e.g., higher mean annual precipitation, lower soil fertility, shallower water table and lower plot mean wood density) than metrics of long‐term climate stability. Life‐form diversity also influenced the patterns; palm assemblages outside the Neotropics comprise many non‐tree (e.g., climbing) palms. Finally, we show that tree palms can influence estimates of above‐ground biomass, but the magnitude and direction of the effect require additional work. Conclusions Tree palms are not only quintessentially tropical, but they are also overwhelmingly Neotropical. Future work to understand the contributions of tree palms to biomass estimates and carbon cycling will be particularly crucial in Neotropical forests

    Standardized Assessment of Biodiversity Trends in Tropical Forest Protected Areas: The End Is Not in Sight

    Get PDF
    Extinction rates in the Anthropocene are three orders of magnitude higher than background and disproportionately occur in the tropics, home of half the world’s species. Despite global efforts to combat tropical species extinctions, lack of high-quality, objective information on tropical biodiversity has hampered quantitative evaluation of conservation strategies. In particular, the scarcity of population-level monitoring in tropical forests has stymied assessment of biodiversity outcomes, such as the status and trends of animal populations in protected areas. Here, we evaluate occupancy trends for 511 populations of terrestrial mammals and birds, representing 244 species from 15 tropical forest protected areas on three continents. For the first time to our knowledge, we use annual surveys from tropical forests worldwide that employ a standardized camera trapping protocol, and we compute data analytics that correct for imperfect detection. We found that occupancy declined in 22%, increased in 17%, and exhibited no change in 22% of populations during the last 3–8 years, while 39% of populations were detected too infrequently to assess occupancy changes. Despite extensive variability in occupancy trends, these 15 tropical protected areas have not exhibited systematic declines in biodiversity (i.e., occupancy, richness, or evenness) at the community level. Our results differ from reports of widespread biodiversity declines based on aggregated secondary data and expert opinion and suggest less extreme deterioration in tropical forest protected areas. We simultaneously fill an important conservation data gap and demonstrate the value of large-scale monitoring infrastructure and powerful analytics, which can be scaled to incorporate additional sites, ecosystems, and monitoring methods. In an era of catastrophic biodiversity loss, robust indicators produced from standardized monitoring infrastructure are critical to accurately assess population outcomes and identify conservation strategies that can avert biodiversity collapse. © 2016 Beaudrot et al

    Madagascar Terrestrial Camera Survey Database 2021: A Collation of Protected Forest Camera Surveys from 2007–2021

    Get PDF
    Madagascar is a threatened global biodiversity hotspot and conservation priority, yet we lack broad-scale surveys to assess biodiversity across space and time. To fill this gap, we collated camera trap surveys, capturing species occurrences within Madagascar into a single standardized database. This data set includes nine distinct protected areas of Madagascar and encompasses 13 subprojects, 38 camera arrays, and 1156 sampling units (independent camera site per survey) within two important biodiversity eco-regions: western dry deciduous forest and eastern humid rainforest. Camera surveys were conducted from June 2007 to January 2021. The final data set includes 17 unique families of mammals (Bovidae, Canidae, Cheirogaleidae, Daubentoniidae, Equidae, Eupleridae, Felidae, Hominidae, Indriidae, Lemuridae, Lepilemuridae, Muridae, Nesomyidae, Pteropodidae, Soricidae, Suidae, Tenrecidae) comprising 45 species and 27 unique families of birds (Accipitridae, Acrocephalidae, Alcedinidae, Bernieridae, Brachypteraciidae, Caprimulgidae, Cisticolidae, Columbidae, Coraciidae, Corvidae, Cuculidae, Dicruridae, Mesitornithidae, Monarchidae, Motacillidae, Muscicapidae, Numididae, Phasianidae, Rallidae, Sarothruridae, Strigidae, Sturnidae, Sulidae, Threskiornithidae, Upupidae, Vangidae, Zosteropidae) comprising 58 species. Images were processed and verified by individual project data set creators and camera operation and species tables were then collated. The final product represents the first broad-scale freely available standardized formal faunal database for Madagascar. Data are available through this publication and at DOI: 10.5281/zenodo.5801806. These data will be useful for examining species-level and community-level trends in occurrence across space or time within Madagascar and globally, evaluating native and invasive species dynamics, and will aid in determining species conservation status and planning for at-risk species. There are no copyright restrictions; please cite this paper when using the data for publication

    A Secure and Synthesis Tele-Ophthalmology System

    Get PDF
    Biological invasions can represent important threats to endemic species, including those within the invaders’ food webs. The Asian common toad (Duttaphrynus melanostictus) was introduced to Madagascar in 2011. This introduction presents a potentially dangerous prey item to a relatively naïve, highly diverse endemic carnivore fauna. Using a multivariate niche modeling approach (background test), we assessed the predicted niche overlap between D. melanostictus and six endemic carnivores in eastern Madagascar. The overlap between this potential prey and predators was assessed on four environmental niche axes: temperature, precipitation, vegetation cover and elevation. Our results showed a mixture of niche overlap and divergence between D. melanostictus and the six carnivores for environmental axes tested. There was significant overlap with five of the carnivores on temperature and NDVI axes. On the precipitation axis, there was significant overlap between D. melanostictus with two species. Our results suggested that wide-ranging, locally rare carnivores may overlap extensively with D. melanostictus. The six carnivores that inhabit the eastern rainforest of Madagascar will likely share multiple, niche axes with this novel potential prey item. Species that eat the non-native common toad and are susceptible to its toxins are at conservation risk because their populations may not be robust enough to adapt quickly to this threat. We advocate closely monitoring these emerging interactions and suggest a preemptive conservation strategy for carnivores potentially at risk

    Madagascar Terrestrial Camera Survey Database 2021: A collation of protected forest camera surveys from 2007–2021

    No full text
    Madagascar is a threatened global biodiversity hotspot and conservation priority, yet we lack broad-scale surveys to assess biodiversity across space and time. To fill this gap, we collated camera trap surveys, capturing species occurrences within Madagascar into a single standardized database. This data set includes nine distinct protected areas of Madagascar and encompasses 13 subprojects, 38 camera arrays, and 1156 sampling units (independent camera site per survey) within two important biodiversity eco-regions: western dry deciduous forest and eastern humid rainforest. Camera surveys were conducted from June 2007 to January 2021. The final data set includes 17 unique families of mammals (Bovidae, Canidae, Cheirogaleidae, Daubentoniidae, Equidae, Eupleridae, Felidae, Hominidae, Indriidae, Lemuridae, Lepilemuridae, Muridae, Nesomyidae, Pteropodidae, Soricidae, Suidae, Tenrecidae) comprising 45 species and 27 unique families of birds (Accipitridae, Acrocephalidae, Alcedinidae, Bernieridae, Brachypteraciidae, Caprimulgidae, Cisticolidae, Columbidae, Coraciidae, Corvidae, Cuculidae, Dicruridae, Mesitornithidae, Monarchidae, Motacillidae, Muscicapidae, Numididae, Phasianidae, Rallidae, Sarothruridae, Strigidae, Sturnidae, Sulidae, Threskiornithidae, Upupidae, Vangidae, Zosteropidae) comprising 58 species. Images were processed and verified by individual project data set creators and camera operation and species tables were then collated. The final product represents the first broad-scale freely available standardized formal faunal database for Madagascar. Data are available through this publication and at DOI: 10.5281/zenodo.5801806. These data will be useful for examining species-level and community-level trends in occurrence across space or time within Madagascar and globally, evaluating native and invasive species dynamics, and will aid in determining species conservation status and planning for at-risk species. There are no copyright restrictions; please cite this paper when using the data for publication

    WPI.

    No full text
    <p>Overall (a), frequency histogram of occupancy trends and population occupancy status (b), and WPI by site and landscape (c). Shading depicts 50th and 80th (a) or 80th (c) percentile intervals. Labels (c) represent site codes (<a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.1002357#pbio.1002357.s009" target="_blank">S1 Table</a>). The WPI Analytics System is accessible at <a href="http://wpi.teamnetwork.org" target="_blank">http://wpi.teamnetwork.org</a>. Public access allows anyone to monitor ground-dwelling trends of mammal and bird species in these protected areas. See <a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.1002357#pbio.1002357.s012" target="_blank">S4 Table</a> for numerical data for Fig 2A, <a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.1002357#pbio.1002357.s010" target="_blank">S2 Table</a> for Fig 2B, and <a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.1002357#pbio.1002357.s013" target="_blank">S5 Table</a> for Fig 2C.</p
    corecore